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1 Matzkin Identification Chapter

Starting with some readings on nonparametric identification of simultaneous equations for Demand Identi-
fication in Two Sided Markets

1 Matzkin Identification Chapter

Here mainly focus on section 3.5, Identification in Simultaneous Equation Models. Based off of Matzkin
(2008), which should also be covered in these notes. Main Results here are Theorems 1 and 2 from Matzin
(2008).

Focus is on the simultaneous equations model, where Y ∈ RG denotes a vector of observable dependent vari-
ables, X ∈ RK denotes a vector of observable explanatory variables, ε ∈ RG denotes a vector of unobservable
explanatory variables and the relationship between these vectors is specified by a function r∗ : RG×RK → RG
such that

ε = r∗(Y,X)

The set S of r∗, Fε,X that are considered consist of twice differentiable functions r : RG × RK → RG and
twice differentiable, strictly increasing distributions Fε,X : RG ×RK → R such that (i) for all Fε,X , ε and X
are distributed independently of each other (ii) for all r and y, x, |∂r(y, x)/∂y|> 0 (iii) for all r and all x, ε
there exists a unique value of y such that ε = r(y, x), and (iv) for all r, all Fε,X and all x, the distribution
of Y given X = x, induced by r and Fε|X=x has support RG.

For any (r, Fε,X) ∈ S condition (iii) implies that there exists a function h such that for all ε,X

Y = h(X, ε)

This is the reduced form system of the structural equations system determined by r. Will let h∗ denote the
reduced form function determined by r∗ (the “true” value of r).

A special case of this model is the linear system of simultaneous equations, where for some invertible G×G
matrix A and some G×K matrix B,

ε = AY +BX

Premultiplication by A−1 yields the reduced form system

Y = ΠX + ν

where Π = −A−1B and ν = A−1ε. The identification of the true values A∗, B∗ is well studied (Koopmans
(1949), Koopmans, Rubin, Leipnik (1950), and Fisher (1966) as well as most econometrics textbooks).

• My guess is that full nonparametric identification would amount to the conditions for identification of
the linear system holding locally, evverywhere.

Main results here, assume that E(ε) = 0 and Var(ε) = Σ∗, an unkown matrix. Let W denote the varianve
of ν. The identification of (A∗, B∗,Σ∗) is achieved when it can be uniqely recovered from Π and Var(ν). A
priori restrictions on A∗, B∗,Σ∗ are typically used to determine the existence of a unique solution for any
element of the above triple.

Analagoulsy, one can obstain necessary and suffecient conditions to uniquely recover r∗ and F ∗ε from the
distribution of the observable variables (Y,X), when the system of structural equations is nonparametric.
The question of identification is whether we can uniquely recover the density f∗ε and the function r∗ from
the conditional densities fY |X=x.

Following from the definition of observational equivalence, can state that two fucntions r, r̃ satisfying (i)-(iv)
are obs. equivalent iff ∃fε, f̃ε such that (fε, r), (f̃ε, r̃) ∈ S and for all y, x

f̃ε(r̃(y, x))

∣∣∣∣∂r̃(y, x)

∂y

∣∣∣∣ = fε(r(y, x))

∣∣∣∣∂r(y, x)

∂y

∣∣∣∣ (1)
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1 Matzkin Identification Chapter

The function r̃ can be re-expressed as a transformation of (ε, x). To see this, define

g(ε, x) = r̃(h(x, ε), x)

where h is the reduced form equation corresponding to r above. Since∣∣∣∣∂g(ε, x)

∂ε

∣∣∣∣ =

∣∣∣∣∂r̃(h(x, ε), x)

∂y

∣∣∣∣ ∣∣∣∣∂h(x, ε)

∂ε

∣∣∣∣
it follows from assumption (ii) that

∣∣∣∂g(ε,x)
∂ε

∣∣∣ > 0 everywhere. Since, conditional on x, h is invertible in ε and

r̃ is invertible in y, it follows that g is invertible in ε. Substituting into (1), we can see that (r̃, f̃ε) ∈ S is
observationally equivalent to (r, fε) ∈ S iff ∀ε, x

f̃ε(g(ε, x))

∣∣∣∣∂g(ε, x)

∂ε

∣∣∣∣ = fε(ε)

The following theorem provides conditions garunteeing a transformation g of ε does not generate an obser-
vationally equivalent pair (r̃, f̃ε).

Theorem 1 (Matzkin, 2005). Let (r, fε) ∈ S. Let g(ε, x) be such that r̃(y, x) = g(r(y, x), x) and ε̃ = g(ε, x)
are such that (r̃, f̃ε) ∈ S. If for some ε, x, the rank of the matrix

(
∂g(ε,x)
∂ε

)′
∂ log fε(u)

∂ε −
∂ log

∣∣∣ ∂g(ε,x)∂ε

∣∣∣
∂ε(

∂g(ε,x)
∂x

)′
−
∂ log

∣∣∣ ∂g(ε,x)∂ε

∣∣∣
∂x


Alternatively, can express this as an identification result for the function r∗

Theorem 2 (Matzkin, 2005). Let M ×Γ denote the set of pairs (r, fε) ∈ S. The function r∗ is identified in
M if r∗ ∈M and, for all fε ∈ Γ and all r̃, r ∈M such that r̃ 6= r, there exist y, x such that the matrix

(
∂ r̃(y,x)
∂y

)′
∆y(y, x; ∂r, ∂2r, ∂r̃, ∂2r̃) + ∂ log(fε(r(y,x)))

∂ε
∂r(y,x)
∂y(

∂ r̃(y,x)
∂x

)′
∆y(y, x; ∂r, ∂2r, ∂r̃, ∂2r̃) + ∂ log(fε(r(y,x)))

∂ε
∂r(y,x)
∂x


is strictly larger than G, where

∆y(y, x; ∂r, ∂2r, ∂r̃, ∂2r̃) =
∂

∂y
log

∣∣∣∣∂r(y, x)

∂y

∣∣∣∣− ∂

∂y
log

∣∣∣∣∂r̃(y, x)

∂y

∣∣∣∣
∆x(y, x; ∂r, ∂2r, ∂r̃, ∂2r̃) =

∂

∂x
log

∣∣∣∣∂r(y, x)

∂y

∣∣∣∣− ∂

∂x
log

∣∣∣∣∂r̃(y, x)

∂y

∣∣∣∣
Example 1. As a simple example, consider the simultaneous equations model analyzed by Matzkin (2007c),
where for some unknown function g∗ and some parameter values β∗, γ∗,

y1 = g∗(y2) + ε1

y2 = β∗y1 + γ∗x+ ε2

Further, assume that (ε1, ε2) has an everywehre positive, differentiable desnsity f∗ε1,ε2 such that, for two not
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1 Matzkin Identification Chapter

necessarily known a-priori values (ε̄1, ε̄2) and (ε′′1 , ε
′′
2)

0 6=
∂ log f∗ε1,ε2(ε̄1, ε̄2)

∂ε1
6=
∂ log f∗ε1,ε2(ε′′1 , ε

′′
2)

∂ε1
6= 0

∂ log f∗ε1,ε2(ε̄1, ε̄2)

∂ε2
=
∂ log f∗ε1,ε2(ε′′1 , ε

′′
2)

∂ε2
= 0

The observable exogeneous variable x is assumed to be distributed independently of (ε1, ε2) and to possess
support R. In this model

ε1 = r∗1(y1, y2, x) = y1 − g∗(y2)

ε2 = r∗2(y1, y2, x) = −β∗y1 + y2 − γ∗x

The Jacobian determinant is ∣∣∣∣∣∣
(

1 −∂g
∗(y2)
∂y2

−β∗ 1

)∣∣∣∣∣∣ = 1− β∗ ∂g
∗(y2)

∂y2

which will be positive so long as 1 > β∗∂g∗(y2)/∂y2. Since the first element in the diagonal is positive, it

follows from Gale and Nikaido (1965) that the function r∗ is globally invertible if the conditionl 1 > β∗ ∂g
∗(y2)
∂y2

holds for all y1. Let r, r̃ be any two differentiable functions satisfying this condition and the other properties

assumed about r∗. Suppose that at some y2, ∂g̃(y2)
∂y2

6= ∂g(y2)
∂y2

. Assume also that γ 6= 0 and γ̃ 6= 0. Let fε1,ε2
denote any density satisfying the same properties that f∗ε1,ε2 is assumed to satisfy. Denote by (ε1, ε2) and
(ε′1, ε

′
2) the two points such that

0 6= ∂fε1,ε2(ε1, ε2)

∂ε1
6= ∂ log fε1,ε2(ε1, ε

′
2)

∂ε1
6= 0

∂ log fε1,ε2(ε1, ε2)

∂ε2
=
∂ log fε1,ε2(ε′1, ε

′
2)

∂ε2
= 0

Define

a1(y1, y2, x) :=
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε1
− β ∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε2

a2(y1, y2, x) :=

 ∂2g(y2)
∂y22

1− β ∂g(y2)
∂y2

−
∂2g̃(y2)
∂y22

1− β ∂g̃(y2)
∂y2

− ∂g(y2)

∂y2

∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε1

+
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε2

a3(y1, y2, x) := −γ ∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε2

By Theorem 3.4, r and r̃ will not be observationally equivalent if for all fε1,ε2 there exists (y1, x) such that
the rank of the matrix  1 −β̃ a1(y1, y2, x)

−∂g̃(y2)
∂y2

1 a2(y1, y2, x)

0 −γ̃ a3(y1, y2, x)


1like a global extension to the implicit function theorem
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1 Matzkin Identification Chapter

is 3. Let

a′1(y1, y2, x) :=
(
β̃ − β

) ∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε2

a′2(y1, y2, x) :=

 ∂2g(y2)
∂y22

1− β ∂g(y2)
∂y2

−
∂2g̃(y2)
∂y22

1− β ∂g̃(y2)
∂y2

+

(
∂g̃(y2)

∂y2

− ∂g(y2)

∂y2

)(
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε1

)

a′3(y1, y2, x) = (γ̃ − γ)
∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε2

Multiplying the first column of A by −∂ log fε1,ε2 (y1−g(y2),−βy1+y2−γx)

∂ε1
and adding it to the third column, and

multiplying the second column by
∂ log fε1,ε2 (y1−g(y2),−βy1+y2−γx)

∂ε2
and adding it to the third column2, one

obtains the matrix  1 −β̃ a′1(y1, y2, x)

−∂g̃(y2)
∂y2

1 a′2(y1, y2, x)

0 −γ̃ a′3(y1, y2, x)


By assumption either

a′2(ȳ1, ȳ2, x̄) 6= 0 or a′2(ỹ1, ỹ2, x̃) 6= 0

where (ȳ1, ȳ2, x̄) correspond to an arbitrary (ε1, ε2), and (ỹ1, ỹ2, x̃) correspond to (ε′′1 , ε
′′
2) from above.3.

Suppose the later. Let y1 = g(y2 + ε1) and let x =
−βy1+y2−ε′2

γ . Follows that

∂ log fε1,ε2(y1 − g(y2),−βy1 + y2 − γx)

∂ε2
= 0

At such a y1, x the matrix above becomes the rank 3 matrix 1 −β̃ 0

−∂g̃(y2)
∂y2

1 a′2(y1, y2, x)

0 −γ̃ 0


so the derivatives of g∗ are identified.

2Therse are standard row operations and do not change the invertibility
3Actually I’m a bit unsure here
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2 An Almost Ideal Demand System

2 An Almost Ideal Demand System

Here I read the 1980 Paper, An Almost Ideal Demand System By Angus Deaton and John Muelbauer. The
paper goes over how to identify demand systems in large markets. The hope is to adapt this somehow to
two sided markets under competition.

2.1 Introduction

• Richard Stone (1954) first estimated a system of demand equations derived explicitly from consumer
theory

• Paper proposes and estimates a new model which is of comparable generality to the Rotterdam and
translog models but has advantages over both

• Model (AIDS) gives an arbitrarty first order-approximation to any demand system, satisfies the axioms
of choice exactly, aggregates perfectly over consumers without invoking parallel linear Engle curves, has
a functional form which is consistent with known household-budget data, simple to estimate, largely
avoids need for non-linear estimation.

• Model is estimated on postwar British data.

2.2 Specification of the AIDS

Generally, starting point has been the specification of a function general enough to act as a second-order
approximation to any arbitrart direct or indirect utility function. It is possible to use a first order approxi-
mation to the demand functions themselves as in the Rotterdam model.

AIDS approach follows from these approaches but builds froma specific class of preferences by which the
theorems of Muellbauer permit exact aggregation over consumers. Preferences are known as PIGLOG
preferences and are represented via expenditure function1. Denote the expenditure function c(u, p) for
utility u and price vector p and define the PIGLOG class by

log c(u, p) = (1− u) log a(p) + u log b(p); for u ∈ [0, 1] (1)

The positive constant returns to scale functions a(p) and b(p) can be regarded as the costs of substinence
and bliss, respectively. Next take specific functional forms for log a(p) and log b(p). To ensure a flexible
functional form for the cost function, the specific funcitonal form for the above functions must posess enough
parameters so that at any single point the cost function derivatives up to a second order w.r.t u and p can
be set equal to those of an arbitrary cost function2. Take

log a(p) = α0 +
∑
k

αk log pk +
1

2

∑
k

∑
j

γ∗kj log pk log pj (2)

log b(p) = log a(p) + β0

∏
k

pβkk (3)

With these specifications, the AIDS cost function is written

log c(u, p) = α0 +
∑
k

αk log pk +
1

2

∑
k

∑
j

γ∗kj log pk log pj + uβ0

∏
k

pβkk (4)

where αi, βi, γ
∗
ij are the parameters of the model. Clearly, c(u, p) is CRS in p provided that

∑
i αi =

1,
∑
j γ
∗
kj =

∑
k γ
∗kj =

∑
j βj = 0. Also straightforward to check that (4) has enough paramaters to be a

flexible functional form remembering that utility is orginal so we can always choose a normalization such

that, at a point ∂2 log c
∂u2 = 0.

1minimum expenditure necessary to obtain a specific utility level at given prices
2Approximation is at a point, basically means that the model specification gives the “specifier” full control over the first

and second derviatives at one specific point
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2 An Almost Ideal Demand System

Demand equations can be derived from the cost functions in equation (4). It is a fundamental property of

the cost function that its price derivatives are the quantities demanded ∂c(u,p)
∂pi

= qi. Multiplying both sides

by pi/c(u, p) delivers
∂ log c(u, p)

∂pi
=

piqi
c(u, p)

= wi (5)

where wi is the budget share of good i. So log differentiation of (4) gives budget shares as a function of
prices and utility

wi = αi +
∑
j

γij log pj + uβ0βi
∏
k

pβkk (6)

where γij = 1
2 (γ∗ij +γ∗ji)

3. For a utility mazimizing consumer, total expenditure x is equal to c(u, p) and this
equality can be inverted to five u as a function of p and x, the indirect utility function. Do this for (4) and
substitute into (6) to obtain budget shares as a function of prices (p) and total expenditure (x); these are
the AIDS demand functions in budget share form.

wi = αi +
∑
j

γij log pj + βi log(c/P ) (7)

where P is a price index defined by

logP = α0 +
∑
k

αk log pk +
1

2

∑
j,k

γkj log pk log pj (8)

The restrictions on the parameters of (4) plus the definition of γij imply restrictions on the parameters of
the AIDS equation (7). Specifically, they require∑

i

αi = 1,
∑
i

γij = 0,
∑
i

βi = 0 (9)∑
j

γij = 0 (10)

γij = γji (11)

provided (9), (10), (11) hold, (7) represents a system of demand functions which add up to total expenditure
(
∑
wi = 1), are homogeneous of degree 0 and which satisfy Sltusky symmetry.

Given these, the AIDS is simply interpreted: in the absence of changes in relative prices and the real
expenditure (x/P ), the budget shares are constants. This is a starting point for predictions using the
model4.

Changes in relative prices work through the terms γij : each γij represents 102 the effect on the i-th budget
share of a 1 percent increse in the j-th price with (x/P ) held constant. Changes in real expenditure operate
through the βi coefficients; these add to zero and are positive for “luxuries” and negative for “necessities”.

2.3 Aggregation Over Households

Note: This section basically shows that the AIDS demand system derived above for a single household aggre-
gates nicely under some assumptions, and that the aggregate demand curve looks basically like the individual
household demand curve. In general, I don’t think that microfounding the aggregate demand model in this way
is so important, espcially given the strict assumption required to do this, but it does provide some intuition
as to underlying assumptions that may be useful.

Aggregation theory from Muellbauer (1975, 1976) imply that exact aggregation is possible if, for each house-

3If the Slutsky matix is symmetric γ∗ji = γ∗ij = γij = γji anyways.
4This seems like a testable resttiction of the model
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2 An Almost Ideal Demand System

hold h, behavior is descrbed by a generalization of (7) given below1.

wih = αi +
∑
j

γij log pj + βi log(xh/khP ) (12)

kh can be interpreted as a sophisticated measure of households size, which, in principle, could account for
age composition, other household characteristics, and economies of household size. This allows for a limited
amount of taste variation across households.

The share of aggregate expenditure on good i in the aggregate budget of all households, denoted ω̄i is given
by ∑

h

piqih

/∑
xh

=
∑
h

xjwih

/∑
xh

Applied to (12) this yields

w̄i = αi +
∑
j

γij log pj − βi logP + βi

∑
h

xj log(xh/kh)

/∑
xh

 (13)

Define the aggregate index k by

log(x̄/k) :=
∑
h

xh log(xh/kh)

/∑
xh (14)

where x̄ is the average level of total expenditure xh. So (13) becomes

w̄i = αi +
∑
j

γij log pj + βi log(x̄/kP ) (15)

Notice this is the same form as in (12) and shows that under these assumptions, aggregate budget shares
correspond to the decisions of a representative household whose budget is given by x̄/k, the “representative”
budget level.

When estimating the model, it is generally assumed that k is constant or uncorrelated with x̄ or p so that
no omitted variably bias occurs from omitting k from estimation and redefining α∗i = αi − βi log k∗, where
k∗ is the constant or sample mean value of k.

2.4 Generality of the Model

Flexible functional form property of the AIDS cost function implies that the demand functions derived
from it are first order approximations to any set of demand functions derived from utility maximizing. If
mazimizing behavior is not assumed but demands are continuous functions of the budget and prices, then
AIDS demand functions (7) can still be viewerd as a first-order approximation1. Because AIDS model still
gives full control over first and second derivatives, this is not bad.

However, there are still a lot of parameters. One obvious restriction is that, for some pairs (i, j), γij should
be zero. For such pairs, the budget share of each is independent of the price of the other if (x/P ) is held
constant. Can be shown that γij has approximately the same sign as the compensated cross-price elasticity2.

1Interesting to note which parameters depend on h here
1I think this is the best interpretation of the AIDS model.
2This paper is published in 1980, well before the 1996 Tibshirani LASSO paper. Restricting some of the γij to be 0 is

essentially a sparsity condition. It would be interesting to come up with a way of applying LASSO here. Maybe also take a
Bayseian approach. The researcher has some prior on which products are 0, use LASSo to update the prior.

8



2 An Almost Ideal Demand System

2.5 Restrictions

Starting from equations (7) and (8) as maintained hypotheses can examine the effects of restrictions (9)-(11).
The conditions (9) are the adding-up restrictions and, as can be checked from (7), they ensure that

∑
wi = 1.

Homegeneity of the demand functions require restriction (10) which can be tested equation by equation.
Symmetry is also a testable restriction.

2.6 Estimation

In general, estimation can be carried out by substituting (8) into (7) to give

wi = (αi − βiα0) +
∑
j

γij log pj + βi

log x−
∑
k

αk log pk −
1

2

∑
k,j

γkj log pk log pj

 (16)

and estimating this non-linear system of equations by maximum likelihood or other methods with and
without the restrictions (10) and (11). With rnough data, this is not particularly difficult to estimato since
the first order conditions for MLE are linear in α and γ, given β, and vice versa so that concentration allows
iteration on a subset of the parameters.

Although all the parameters in (16) are identified given sufficient variation in the independent variables, in
many examples the practical identification of α0 may be difficult. The parameter is only identified from the
αi’s in (16) by the presence of these latter inside the term in braces, originally in the formula for logP .
However, in situations where individual prices are closely collinear, logP is unlikely to be very sensitive to
its weights so that changes in the intercept term in (16) due to variations in α0 can be offset in the α’s with
minimal effect on logP . This can be overcome in practice by assigning a value to α0 a priori.

In many situations it is possobile to explot the collinearity of prices for a much simplet estimation technique.
Note from (7) that if P is known, the model is linear in it’s parameters and so estimation can be done
equation by equation through OLS (at least without cross-equation restrictions such as symmetry.)

The adding-up constraints (10) will be automatically satisfied by these estimates. In situations where prices
are closely collinear, it may be adequate to approximate P as proportional to some index P ∗ such as
logP ∗ =

∑
wk log pk. In this case, (7) can be estimated as

wi = (αi − βi log φ) +
∑
j

γij log pj + βi log

(
x

P ∗

)
(17)

In this setup, the αi parameters are only identifies up to a scalar multiple of βi
1. If we write α∗i = αi−βi log φ,

it is easily seen that
∑
α∗k = 0 is required for adding up, since

∑
βk = 0.

Empirical results show that (17) is a good approximation for (16). However, it is still an approximation.

2.7 An Application to Postwar British Data

Estimate the model using annual British daa from 1954 to 1974 on eight nondurable groups of consumer
expenditure, namely: food, clothing, housing services, fuel, drink + tobacco, transport + communication
services, other goods, and other services.

As discussed above, if we assume that the index k in (15) is either constant or that its deviations are
independently distributied from those of the average budget x̄ and of prices, no biases result from its omission.
In particular, allow the intercepts in (15) to absorb the −βi log k terms. Then proceed by first following the
strategy outlined in Section 2.6, setting logP ∗ =

∑
wk log pk for each year and estimation equation (17).

1because we don’t know what φ is presumably
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3.1 Introduction

Economists long concrened with how to estimate the effect of a treatment on some outcome of interest,
possilbe after conditioning on a vector of covariates. Main empirical challenge in studies of this type arises
from the fact that selection for treatment is usually related to the potential outcomes that individuals would
attain with and without the treatment.

Variety of methods have been proposed to overcome the selection problem. Traditional approach relies on
distributional assumptions and functional form restrictions to identify average treatment effects and other
treatment parameters of interest. Estimators based on this approach can be seriously biased by modest
departures from parametric assumptions. In addition, a number of researchers have noted that strong
parametric assumptions are not necessary to identify parameters of interest.

Consequently, desirable to develop robust estimators of treatment parameters bases on nonparametric or
semi parametric identification procedures. Article introduces a new class of IV estimators of linear and
nonlinear average treatment response models with covariates. In the spirit of Roehrig (1988), identification
is attained non-parametrically and does not depend on the choice of parametric model. As in the IV model
of IA (1994), identification comes from a binary instrument that induces exogenous selection into treatment
for some subset of the population. Approach taken here easily accommodates covariates and can be used to
estimate nonlinear models with a binary and endogenous regressor.

Ability to control for covariates is important because instruments may require conditioning on a set of
covariates to be valid. Covariates can also be used to reflect observable differences in the composition
of populations. As a by-product of the general framework introduced here, develop an IV estimator that
provides a linear least squares approximation to an average treatment response function, just as OLS provides
a linear least squares approximation to a conditional expectation. Shown that 2SLS typically does not have
this property.

3.2 The Framework

3.2.1 Identification Problem

Suppose interested in the effect of some treatment, represented by the binary variable D (college) on some
outcome of interest Y (earnings). As in Rubin (1974, 1977) define Y1, Y0 as the potential outcomes that an
individual would attain with and without being exposed to the treatment. Treatment parameters are defiend
as characteristics of the distribution of (Y1, Y0) for well defined subpopulations.

In the example, Y1 represents potential earnings as a college graduate while Y0 represents potential earnings
as a non-graduate. Treatment effect is Y1 − Y0. Now, an identification problem arises from the fact that we
cannot observe both potential outcomes Y1 and Y0 for the same individual, only observe Y = Y1D+Y0(1−D).
Since one of the potential outcomes is always missing, cannot compute the treatment effect for any individual.

However, comparisons of average earnings of average effect of the treatment on the treated and non treated
to not usually give the right answer

E[Y |D = 1]− E[Y |D = 0] = E[Y1|D = 1]− E[Y0|D = 0]

= E[Y1 − Y0|D = 1] +
(
E[Y0|D = 1]− E[Y0|D = 0]

) (1)

Because treatment status is not independent of potential outcomes, this cannot be reduced to ATE. The
first term of the RHS of (1) gives the average effect of the treatment on the treated. Second term represents
bias caused by selection into treatment.

Of course, can think of other parameters of interest.
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3.2.2 Identification by Instrumental Variables

IV methods proposed to recover treatment parameters. Article follows the approach of Imbens and Angrist
(1994).

Suppose that there is a binary instrument Z available to the researcher. The formal requisites to be an
instrument are stated below. Informally, the role of an instrument is to induce and exogenous variation
in the treatment variable. The binary variable Dz represents potential treatment status given Z = z.
Suppose, for example, that Z is an indicator for college proximity. Then D0 = 0 and D1 = 1, living nearby
a college at the end of high school, but would not graduate otherwise. The treatment status indicator
variable can then be expressed as D = ZD1 + (1 − Z)D0. In practice, observe Z and D, but not the
potential treatment indicators. Following terminology of Angrist (1996), population is divided into groups
by treatment indicators, compliers, never takers, always takers, defiers.

In order to state the properties that a valid instrument should have, need to include Z in the definition of
the potential outcomes. For a particular individual, the variable Yzd represents the potential outcome would
obtain if D0 = 0 for some individual.

Assumption 1. Assume the following on the joint distribution of observables and unobservables
1. Independence of the instrument: Conditional on X, the random vector (Y00, Y01, Y10, D0, D1) is inde-

pendent of the instrument Z.
2. Exclusion of the instrument: P(Y1d = Y0d|X) = 1 for d ∈ {0, 1}
3. First Stage: 0 < P(Z = 1|X) < 1 and P(D1 = 1|X) > P(D0 = 1|X)
4. Monotonicity: P(D1 ≥ D0|X) = 1

Assumptions are essentially the conditional versions of those used in Angrist. Assumption 2.1.2 means that
we can write potential outcomes in terms of D.

Imbens and Angrist (1994) show that if assumption 2.1 holds, in absence of covariates, a simple IV estimand
identifies the LATE

αIV =
cov(Y,Z)

cov(D,Z)
=

E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
= E[Y1 − Y0|D1 > D0] (2)

3.3 Identification of Statistical Characteristics for Compliers

Section presents an identification theorem that includes previous results on IV models for treatment effects
on IV models for treatment effects as special cases. To study identification, proceed as if we know the joint
distribution of (Y,D,X,Z). In practice, can use a random sample from (Y,D,X,Z) to construct empirical
analogs.

Lemma 1. Under Assumption 1

P(D1 > D0|X) = E[D|Z = 1, X]− E[D|Z = 0, X] > 0

Proof. Under Assumption 1

P(D1 > D0|X) = 1− P(D1 = D0 = 1|X)− P(D1 = D0 = 1|X) (by monotonicity)

= 1− P(D1 = D0 = 0|X,Z = 1)− P(D1 = D0 = 1|X,Z = 0) (by independence of Z)

= 1− P(D = 0|Z,Z = 1)− P(D = 1|X,Z = 0) (by monotonicity)

= P(D = 1|X,Z = 1)− P(D = 1|X,Z = 0) (because D is binary)

= E[D|X,Z = 1]− E[D|X,Z = 0] (because D is binary)

Lemma says that, under assumption 2.1, proportion of compliers in the population is identified given X and
that this proportion is greater than 0. Preliminary result is important for establishing the following theorem.
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Theorem 1. Let g(·) be any measurable function of (Y,D,X) such that E[|g(Y,D,X)|] <∞. Define

κ(0) ≡ (1−D)
(1− Z)− E[(1− Z)|X]

E[(1− Z)|X]E[Z|X]

κ(1) ≡ D
Z − E[Z|X]

E[(1− Z)|X]E[Z|X]

κ ≡ κ(0)E[(1− Z)|X] + κ(1)E[Z|X]

= 1− D(1− Z)

P(Z = 0|X)
− (1−D)Z

P(Z = 1|X)

Then under Assumption 1

E[g(Y,D,X)|D1 > D0] =
1

P(D1 > D0)
E
[
κg(Y,D,X)

]
(3)

E[g(Y0, X)|D1 > D0] =
1

P(D1 > D0)
E
[
κ(0)g(Y,X)

]
(4)

E[g(Y1, X)|D1 > D0] =
1

P(D1 > D0)
E
[
κ(1)g(Y,X)

]
(5)

This theorem is a powerful identification result, says that any statistical characteristic that can be defined
in terms of moments of the joint distribution is identified for compliers. Since D is exogenous given X for
compliers, Theorem 1 can be used to identify meaningful treatment parameters for used to identify meaningful
treatment parameters for this group of the population.

Now go through the proof of this Theorem.

Proof. Monotonicity along with the law of total expectation implies that

E[g(Y,D,X)|X,D1 > D0] =
1

P(D1 > D0|X)

{
E[g(Y,D,X)|X]

− E[g(Y,D,X)|X,D1 = D0 = 1]P(D1 = D0 = 1|X)

− E[g(Y,D,X)|X,D1 = D0 = 0]P(D1 = D0 = 0|X)
}

Since Z is ignorable and independent of the potential outcomes given X and since monotonicity is assumed,
the above equation can be rewritten as

E[g(Y,D,X)|X,D1 > D0] =
1

P(D1 > D0|X)

{
E[g(Y,D,X)|X]

− E[g(Y,D,X)|X,D = 1, Z = 0]P(D = 1|X,Z = 0)

− E[g(Y,D,X)|X,D = 0, Z = 1]P(D = 0|X,Z = 1)
}

Consider similarly, by law of total expectation

E[D(1− Z)g(Y,D,X)|X] = E[g(Y,D,X)|X,D = 1, Z = 0]P(D = 0, Z = 1|X)

= E[g(Y,D,X)|X,D = 1, Z = 0]P(D = 1|X,Z = 0)P(Z = 0|X)

=⇒ 1

P(Z = 0|X)
E[D(1− Z)g(Y,D,X)|X] = E[g(Y,D,X)|X,D = 1, Z = 0]P(D = 1|X,Z = 0)

E[Z(1−D)g(y,D,X)|X] = E[g(Y,D,X)|X,D = 0, Z = 1]P(D = 0, Z = 1)

= E[g(Y,D,X)|X,D = 0, Z = 1]P(D = 0|X,Z = 1)P(Z = 1|X)

=⇒ 1

P(Z = 1|X)
E[Z(1−D)g(y,D,X)|X] = E[g(Y,D,X)|X,D = 0, Z = 1]P(D = 0|X,Z = 1)
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Under Assumption 1.3 can combine the last three equations to

E[g(Y,D,X)|X,D1 > D0] =
1

P(D1 > D0|X)
E

[
g(Y,D,X)

(
1− D(1− Z)

P(Z = 0|X)
− Z(1−D)

P(Z = 1|X)

) ∣∣∣∣X
]

Bayes’ Theorem implies that

P(D1 > D0|X) =
fX|D1>D0

(x)P(D1 > D0)

fX(x)

=⇒ 1

P(D1 > D0|X)
=

fX(x)

fX|D1>D0
(x)P(D1 > D0)

Applying Bayes’ Theorem and Integrating yields∫
E[g(Y,D,X)|X,D1 > D0]dP (X|D1 > D0)

=

∫
E[g(Y,D,X)|X,D1 > D0]fX|D1>D0

(x)dx

=
1

P(D1 > D0)

∫
E

[
g(Y,D,X)

(
1− D(1− Z)

P(Z = 0|X)
− Z(1−D)

P(Z = 1|X)

) ∣∣∣∣X
]
dP (X)

or

E[g(Y,D,X)|D1 > D0] =
1

P(D1 > D0)
E[κg(Y,D,X)]

This proves the first part of the theorem. To prove the second part, note that

E[g(Y,X)(1−D)|X,D1 > D0] = E[g(Y0, X)|D = 0, X,D1 > D0]P(D = 0|X,D1 > D0)

= E[g(Y0, X)|Z = 0, X,D1 > D0]P(D = 0|X,D1 > D0) (for compliers Z = D)

= E[g(Y0, X)|X,D1 > D0]P(Z = 0|X) (by independence of Z)

The proof of the next parts follows quickly from here. For the second equality note that

E[g(Y0, X)|X,D1 > D0] = E
[
g(Y,X)

(1−D)

P(Z = 0|X)

∣∣∣X,D1 > D0

]
=

1

P(D1 > D0|X)
E[κ

(1−D)

P(Z = 0|X)
g(Y,X)|X]

=
1

P(D1 > D0|X)
E[κ0g(Y,X)|X]

Integration of this equation as before yields the result.

3.4 Estimation of Average Response Functions

3.4.1 Local Average Response Functions

Consider the function of (D,X) that is equal to E[Y0|X,D1 > D0] if D = 0 and is equal to E[Y1|X,D1 > D0]
if D = 1. This function describes average treatment responses for any group of compliers defined by some
value for the covariates. Refer to this function as the local average response function (LARF). Since Z = D
for compliers, under Assumptions 1.1 and 1.2, Z is ignorable for the compliers given X. It follows that

E[Y |X,D = 0, D1 > D0] = E[Y0|D1 > D0]

E[Y |X,D = 1, D1 > D0] = E[Y1|X,D1 > D0]

E[Y |X,D = 1, D1 > D0]− E[Y |X,D = 0, D1 > D0] = E[Y1 − Y0|X,D1 > D0]
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So E[Y |X,D1 > D0] is the LARF. Important special case arises when P(D0 = 0|X) = 1. This happens in
some randomized experiments.

The face that the conditional expectation of Y given D and X holds for compliers has an interpretation as
an average treatment response function would not be very useful in the absence of Theorem 1.

3.4.2 Estimation

Section describes two ways to learn about the LARF: (i) estimate a parameterization of the LARF by Least
Squares, (ii) Specify a parametric distribution for P (Y |X,D,D1 > D0) and estimate the parameters of the
LARF by a Maximum Likelihood. Since identification does not depend on these parametric specifications
have an appealing interpretations under misspecification of the parameterization in (i) or (ii). Through this
W = (Y,D,X,Z) and {wi}ni=1 is a sample of realizations of W .

Least Squares Suppose that the LARF belongs to some class of parametric functions H = {h(D,X; θ) :
θ ∈ Θ ⊂ Rm} in the Lebesgue space of square-integrable functions. Let θ0 be the vector of parameters such
that E[Y |X,D,D1 > D0] = h(D,X; θ). Then

θ0 = arg min
θ∈Θ

E
[
(Y − h(D,X; θ))2|D1 > D0

]
= arg min

θ∈Θ
E
[
κ(Y − h(D,X; θ))2

] (6)

Under functional form misspecification (LARF does not belong to H), θ0 are the parameters of the best least
squares approximation from H to E[Y |D,X,D1 > D0]:

θ0 = arg min
θ∈Θ

E
[(
E[Y |D,X,D1 > D0]− h(D,X; θ)

)2]

14


	Matzkin Identification Chapter
	An Almost Ideal Demand System
	Introduction
	Specification of the AIDS
	Aggregation Over Households
	Generality of the Model
	Restrictions
	Estimation
	An Application to Postwar British Data

	Semiparametric Instrumental Variable Estimation of Treatment Response Models Alberto Abadie (JoE, 2003)
	Introduction
	The Framework
	Identification Problem
	Identification by Instrumental Variables

	Identification of Statistical Characteristics for Compliers
	Estimation of Average Response Functions
	Local Average Response Functions
	Estimation



